
 
 

tinyML Neuromorphic Engineering Forum Page #1 

tinyML Neuromorphic Engineering Forum 
https://www.tinyml.org/event/tinyml-neuromorphic-engineering-forum/ 

September 27, 2022 

 

Introduction 

 

 

tinyML is a fast-growing initiative around low-power machine-learning technologies for 

edge devices. The scope of tinyML naturally aligns with the field of neuromorphic 

engineering, whose purpose is to replicate and exploit the way biological systems sense 

and process information within constrained resources. 

 

In order to build on these synergies, we are excited to announce the first tinyML Forum 

on Neuromorphic Engineering. During this event, key experts from academia and 

industry will introduce the main trends in neuromorphic hardware, algorithms, sensors, 

systems, and applications. 
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Neuromorphic Intelligence and Learning in 

Robotics 
Yulia Sandamirskaya, Applications Research Lead, Neuromorphic 

computing lab, yulia.sandamirskaya@intel.com 

Overview 

Assistive human-centered robotics is a seminal use case for power-, time-, and data-efficient AI: 

autonomous mobile robots, robotic arms, and humanoids will have no time, space, or energy to lose when 

solving the recognition, localization, planning, decision making, and control tasks in dynamic and 

unstructured human-centered environments. Neuromorphic hardware and computing framework promise 

to support a variety of neural network-based “algorithms” to enable efficient AI for autonomous systems: 

pattern recognition and learning, parallel and graph-based search, model-predictive and adaptive control, 

optimization, planning, and skill learning. How do we identify and combine the most efficient neuromorphic 

algorithms? How can we program and evaluate them quickly and reliably? I will present a proposal for how 

neuromorphic algorithms can be developed and implemented. I will argue that the open-source software 

framework Lava can enable development of programs for neuromorphic hardware, exploiting the full 

potential of neuromorphic algorithms and leading to new, energy efficient and robust AI paradigm for 

autonomous assistive systems. I will show a couple recent examples of neuromorphic applications 

developed on Intel’s research chip Loihi. 

              

Key highlights 

● Neuromorphic hardware supports a wide range of neural network-based algorithms 
● We need new algorithmic and programming paradigm to build neuromorphic applications 
● Autonomous assistive robotics is one application that will profit from novel, neuromorphic AI 

References and useful links  

[1] https://github.com/lava-nc 

[2] Hajizada, E., Berggold, P., Iacono, M., Glover, A., & Sandamirskaya, Y. (2022). Interactive continual learning for 

robots: a neuromorphic approach. In Proceedings of the International Conference on Neuromorphic Systems 2022 (pp. 

1-10) [https://dl.acm.org/doi/pdf/10.1145/3546790.3546791] 

[3] Sandamirskaya, Y., Kaboli, M., Conradt, J., & Celikel, T. (2022). Neuromorphic computing hardware and neural 

architectures for robotics. Science Robotics, 7(67) [https://www.science.org/doi/abs/10.1126/scirobotics.abl8419] 

[4] Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P., ... & Risbud, S. R. (2021). 

Advancing neuromorphic computing with loihi: A survey of results and outlook. Proceedings of the IEEE, 109(5), 911-

934 [https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9395703] 

[5] https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-neuromorphic-loihi-2-lava-

software.html#gs.d5nwtw 

 

mailto:yulia.sandamirskaya@intel.com
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9395703
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The SpiNNaker neuromorphic 

computing platform 
Steve Furber, ICL Professor of Computer Engineering, The University of 

Manchester, UK, steve.furber@manchester.ac.uk 

Overview 

SpiNNaker (a contraction of Spiking Neural Network Architecture) is a digital many-core neuromorphic 
computing platform designed primarily to support large-scale models of brain networks in biological real 
time. In conception for over 20 years and in construction for over 15 years, the million-core SpiNNaker 
machine at Manchester has been supporting an open neuromorphic computing service under the auspices 
of the EU Human Brain Project since April 2016, and has been used of real-time modelling of a detailed 
cortical microcircuit, cerebellar models, basal ganglia and other brain areas. In addition to its use in brain 
modelling, its real-time characteristics render it useful for neurorobotic and other engineering applications. 
A second generation SpiNNaker chip has been developed in collaboration with TU Dresden offering a 10x 
improvement in functional density and energy efficiency, and first silicon is currently being used to support 
software development. SpiNNaker2 offers state-of-the-art neuromorphic performance and efficiency in a 
very flexible configuration, building on a decade of experience of deploying SpiNNaker1. 

 
 

 

 

 

 

 

 

 

 

 

 

Key highlights 

● The world’s largest neuromorphic (brain-inspired) computing platform 
● Openly available under the auspices of the EU Human Brain Project since April 2016 
● Incorporates a million ARM (mobile phone) processors 

References and useful links  

[1] SpiNNaker: A Spiking Neural Network Architecture, now publishers (Open Access), 

      http://dx.doi.org/10.1561/9781680836523  
[2] http://apt.cs.manchester.ac.uk/projects/SpiNNaker/  

[3] http://spinnakermanchester.github.io  

[4] The SpiNNaker Project: https://ieeexplore.ieee.org/document/6750072  

[5] https://iopscience.iop.org/article/10.1088/1741-2560/13/5/051001/meta  

http://dx.doi.org/10.1561/9781680836523
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://spinnakermanchester.github.io/
https://ieeexplore.ieee.org/document/6750072
https://iopscience.iop.org/article/10.1088/1741-2560/13/5/051001/meta
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Digital Spiking Neural Network Accelerators 

for Neuromorphic Edge Intelligence 
Charlotte Frenkel, Assistant Professor, Delft University of Technology, 

c.frenkel@tudelft.nl  

Overview 

A key question is often raised in neuromorphic chip design [1]: should we start from biological primitives 

and figure out how to apply them to real-world applications (bottom-up approach), or should we build on 

working AI solutions and modify them to increase their biological plausibility (top-down approach)? 

 

I will briefly review the main use cases on each side and show that digital spiking neural network 

accelerators provide a flexible and efficient solution, which I will illustrate with two open-source digital 

neuromorphic chips: ODIN [2] and ReckOn [3]. Finally, I will highlight how neuromorphic intelligence can 

be a key enabler for edge computing applications. 

 

 
 

Key highlights 

● Digital neuromorphic chips offer an excellent tradeoff between robustness, flexibility, efficiency, 
scalability, and design time. 

● A bottom-up approach best suits the design of neuromorphic experimentation platforms, while a 
top-down approach is preferred to demonstrate a competitive advantage in real-world applications. 

● Top-down approaches need bottom-up insight toward neuromorphic intelligence. 
● Digital processing is needed to support high-performance learning algorithms. 

References and useful links  
[1] C. Frenkel, D. Bol and G. Indiveri, arXiv preprint arXiv:2106.01288, 2021. https://doi.org/10.48550/arXiv.2106.01288  

[2] C. Frenkel et al., IEEE Trans. BioCAS, vol. 13, no. 1, pp. 145-158, 2019. https://doi.org/10.1109/TBCAS.2018.2880425  

     Open-source repository: https://github.com/ChFrenkel/ODIN/  

[3] C. Frenkel and G. Indiveri, IEEE Int. Solid-State Circuits Conf. (ISSCC), 2022. https://doi.org/10.1109/ISSCC42614.2022.9731734  

     Open-source repository: https://github.com/ChFrenkel/ReckOn/  

 

 

https://doi.org/10.48550/arXiv.2106.01288
https://doi.org/10.1109/TBCAS.2018.2880425
https://github.com/ChFrenkel/ODIN/
https://doi.org/10.1109/ISSCC42614.2022.9731734
https://github.com/ChFrenkel/ReckOn/
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Towards "Greener" AI on the Edge: Energy-Efficient 

Neuromorphic Learning and Inference 
Gert Cauwenberghs, UC San Diego, gcauwenberghs@ucsd.edu 

Overview 

We present neuromorphic cognitive computing systems-on-chip implemented in custom silicon compute-

in-memory neural and synaptic crossbar array architectures that combine the efficiency of local 

interconnects with flexibility and sparsity in global interconnects, and that realize a wide class of deeply 

layered and recurrent neural network topologies with embedded local plasticity for on-line learning, at a 

fraction of the computational and energy cost of implementation on CPU and GPGPU platforms.  Co-

optimization across the abstraction layers of hardware and algorithms leverage inherent stochasticity in the 

physics of synaptic memory devices and neural interface circuits with plasticity in reconfigurable massively 

parallel architecture towards high system-level accuracy, resilience, and efficiency.  Adiabatic energy 

recycling in charge-mode crossbar arrays permit extreme scaling in energy efficiency, approaching that of 

synaptic transmission in the mammalian brain. 

 

Key highlights 

● Superior energy efficiency owing 
to extreme compute-in-memory 
parallelism, with neurosynaptic core 
crossbar elements operating near 
fundamental physical limits 

● High functional versatility in 
configuring cores and their 
interconnectivity for diverse model 
architectures 

● High accuracy and resilience 
through chip-in-the-loop training and 
fine-tuning, exploiting rather than 
fighting inherent device level 
nonlinearity and stochasticity 
 
 

References and useful links  

[1] G. Cauwenberghs, “Reverse Engineering the Cognitive Brain,” Proc. Nat. Acad. Sci. (PNAS), vol. 110 (39), pp. 15512-

15513, 2013 (https://www.pnas.org/doi/10.1073/pnas.1313114110). 

[2] W. Wan, R. Kubendran, C. Schaefer, S.B. Eryilmaz, W. Zhang, D. Wu, S. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. 

Wu, H.-S.P. Wong, and G. Cauwenberghs, “A Compute-in-Memory Chip Based on Resistive Random-Access Memory,” 

Nature, vol. 608, pp. 504–512, 2022 (https://www.nature.com/articles/s41586-022-04992-8). 

[3] N. Mysore, G. Hota, S.R. Deiss, B.U. Pedroni, and G. Cauwenberghs, “Hierarchical Network Connectivity and 

Partitioning for Reconfigurable Large-Scale Neuromorphic Systems,” Frontiers in Neuroscience, vol. 15, pp. 797654:1-

13, 2022 (https://www.frontiersin.org/articles/10.3389/fnins.2021.797654). 

 

https://www.pnas.org/doi/10.1073/pnas.1313114110
https://www.nature.com/articles/s41586-022-04992-8
https://www.frontiersin.org/articles/10.3389/fnins.2021.797654
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On-Sensor AI for Predictive Maintenance  

Aleksandrs Timofejevs, CEO, atimofeev@polyn.ai 

Overview 

For Industry 4.0 health monitoring of machines is vital, and neural networks are ideal for that 

purpose. Vibration-based condition monitoring is one of the basic Predictive Maintenance options detecting 

machine failure. 

The power-hungry sensor node collects a lot of data for further analytics by Machine Learning (ML) 

algorithms. To send all this data to a center for analysis, the data communication would be more trouble 

than it worth. This shortens the battery life of operating sensor nodes. Data reduction can significantly 

decrease the volume of data sent to the cloud, saving OPEX and improving latency. 

A NASP solution reduces that data flow by 1000 times, using neural network modeling, and enable 

to transmit through LoRa (or another wireless technology) only the embeddings extracted from the initial 

data. Thus, by applying a neural network, in this case on a NASP chip, we can obtain the whole range of 

patterns of vibration signals from various vibration sensors. The use of embeddings only reduce data sent 

to the cloud, solving the fundamental problem of low bandwidth required by IIoT systems. 

NASP technology provides the optimal answer to power consumption and computing latency 

challenges through a hybrid analog and digital solution. It combines the advantages of the fixed weights 

part of the NASP chip and flexible weights in a digital co-processor, with smart optimization (pre-processing) 

of raw data directly on-sensor.  

 

Key highlights 

● TinyAI on sensor suitable for  
multi-year battery life or energy harvesting 

● Full flexibility of AI model 
● Data flow reduction 1000 times 

 

 

References and useful links  

[1] https://polyn.ai/technology-3/ 

[2] https://towardsdatascience.com/embeddings-beyond-just-words-2c835678dae2 

[3] https://polyn.ai/polyn-technology-delivers-nasp-test-chip-for-tiny-ai/ 

[4] https://polyn.ai/wp-content/uploads/2022/05/neuromorphic-analog-signal-processing-white-paper.pdf 

 

*energy harvesting technology is possible

low data rate
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Tiny spiking neural networks for sub-

milliwatt AI at the sensor-edge 
Sumeet Kumar, CEO, sumeet.kumar@innatera.com 

Overview 

Sensory data processing in the brain relies on event-driven networks of energy-efficient, 
continuous-time analog neurons and synapses. Spiking networks are able to perform 
advanced signal processing and AI functions even with tiny models due to their inherent 
notion of time. Innatera’s Spiking Neural Processor (SNP) enables ultra-low power 
acceleration of these brain-inspired neural networks. The SNP uses an innovative 
processing architecture that implements spiking neural networks atop a continuous-time 
analog-mixed signal computational fabric, achieving unprecedented inference 
performance within a milliwatt-scale power envelope, and millisecond-scale latency. The 
SNP architecture is programmed like any conventional deep-learning accelerator, 
through Innatera’s PyTorch-driven SDK named Talamo. The SDK radically simplifies the 
development of models through a turn-key workflow that eliminates the need for prior 
knowledge of spiking neural networks. In this talk, Innatera CEO Sumeet Kumar 
introduces the company’s approach to sensor data processing with tiny spiking models, 
and how its Spiking Neural Processor enables ultra-low power inference at the edge. The 
talk briefly presents the Talamo SDK, and provides a comparison of neuromorphic versus 
standard deep-learning accelerators in the context of real-world applications. 
 

 

Key highlights 

● Future of tiny ML at the edge is neuromorphic – always-on processing with tiny spiking neural networks 
● Ultra-low power inference on Innatera’s Spiking Neural Processor 
● Simplified, turn-key development of spiking neural networks with the Talamo SDK 

References and useful links  

[1] www.innatera.com 
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Hardware Friendly Learning for Edge ML 
Akwasi Akwaboah, Graduate Student, aakwabo1@jhu.edu; Ralph Etienne-

Cummings, Professor, retienne@jhu.edu 

Overview 

Realizing Hebbian plasticity in large-scale neuromorphic systems is essential for reconfiguring synapses 
during recognition tasks. Spike-timing dependent plasticity (STDP), as a tool to this effect, has received a 
lot of attention in recent years. This phenomenon encodes weight update information as correlations 
between the presynaptic and postsynaptic event times, as such, it is imperative for each synapse in a 
silicon neural network to somehow understand track its activity and keep its own time. Carefully design 
synapses that can do that can be incorporated into compact, dense and energy efficient learning 
hardware. Here we present a biologically plausible and optimized Register Transfer Level (RTL), and 
algorithmic approach to realize Nearest-Neighbor STDP with temporal tracking and management handled 
by the postsynaptic dendrite on which the synapse sits. We adopt a time-constant based ramp 
approximation for ease of RTL implementation and incorporation in large-scale digital neuromorphic 
systems.  We will describe the architecture, circuits, function of our hardware realizable STDP based 
learning system, and its application to neuroSLAM. 

Key highlights 

● STDP learning method for easy hardware Implementation 
● Register Transfer Language description and available code at https://github.com/Adakwaboah/LODeNNS 
● Applicable to SNN training and future implementation of neuroSLAM 

References and useful links  

[1] A. D. Akwaboah and R. Etienne-Cummings, “LODeNNS: A Linearly-approximated and Optimized Dendrocentric 

Nearest Neighbor STDP,” ICONS '22: Proceedings of the International Conference on Neuromorphic Systems, July 

2022, Article No.: 3, Pages 1–8; https://doi.org/10.1145/3546790.3546793 

 

• Time-constant based Trade-off between the time window and intensity

Chordal ApproximationTangential Approximation

https://github.com/Adakwaboah/LODeNNS
https://dl.acm.org/doi/abs/10.1145/3546790.3546793
https://dl.acm.org/doi/abs/10.1145/3546790.3546793
https://dl.acm.org/doi/proceedings/10.1145/3546790
https://doi.org/10.1145/3546790.3546793
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Robust and Efficient tinyML 

with Spike-based Machine 

Intelligence 

Priyadarshini Panda, Assistant Professor, Electrical Engineering, Yale University, USA 

Email: priya.panda@yale.edu 

Overview 

Spiking Neural Networks 

(SNNs) have recently 

emerged as an alternative 

to deep learning due to their 

huge energy efficiency 

benefits on neuromorphic 

hardware. However, 

training such models for 

diverse tasks for 

heterogeneous workloads 

central to tinyML tasks 

remains a challenge. In this presentation, I will talk about important techniques for training SNNs which 

bring a huge benefit in terms of latency, accuracy, interpretability, and robustness. I will first talk about SNN 

training algorithms using neural architecture searches at individual edge devices. Our recent work [1] 

finds SNNs search for brain-like feedback connections (interestingly, primate visual cortex has 20% 

feedforward and 80% feedback connections) that achieves state-of-the-art performance with significantly 

lesser latency and processing time. Similarly, using pruning can enable >90% weight sparsity that can be 

useful to deploy such models on extreme memory and power-constrained edge platforms. As SNNs find 

usage in real-world applications such as medical robots, and tiny drones, explainability in addition to 

performance is critical. I will talk about the inter-spike interval-based visualization for SNNs developed 

in our group [3] that does not require any compute expensive backpropagation to compute the attention 

map and therefore can be integrated on hardware at the edge. Essentially, this can potentially enable a 

paradigm of prediction followed by an explanation for all tinyML edge platforms. In the end, I will highlight 

the benefits of using SNNs for bringing in robustness such as adversarial resilience, data/model privacy 

and the importance of building suitable hardware aware benchmarking platforms [3, 4] (for von 

Neumann and emerging compute in memory architectures) to realize the energy and performance benefits 

of SNNs over traditional deep learning and their relevance for tinyML.  

References & Links 

[R1] Kim et al. "Neural architecture search for spiking neural networks." arXiv:2201.10355 (ECCV 2022).   

[R2] Kim et al. "Visual explanations from spiking neural networks using inter-spike intervals." Scientific 

reports 11.1 (2021): 1-14. [R3] Yin et al. "SATA: Sparsity-Aware Training Accelerator for Spiking Neural 

Networks." arXiv:2204.05422 (IEEE TCAD 2022). [R4] Bhattacharjee, Abhiroop, et al. "Examining the 

Robustness of Spiking Neural Networks on Non-ideal Memristive Crossbars." ISLPED 2022 (Best Paper). 

[L1]  https://github.com/Intelligent-Computing-Lab-Yale  

[L2] https://intelligentcomputinglab.yale.edu/publications 

 

        
                   

            
                          

                 
         

                
                    

                  
             
                  

    

                                                                             

          
                       

             
                    

                        
                 

mailto:priya.panda@yale.edu
https://github.com/Intelligent-Computing-Lab-Yale
https://intelligentcomputinglab.yale.edu/publications
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Training spiking neural 

networks end-to-end 

with surrogate gradients 
Friedemann Zenke, Group Leader FMI, friedemann.zenke@fmi.ch 

Overview 

Brains rely on spiking neural networks for ultra-low-power information processing. Integrating similar 

efficiency into artificial intelligence requires learning algorithms to instantiate complex spiking neural 

networks and brain-inspired neuromorphic hardware to emulate them efficiently. To this end, I will briefly 

introduce surrogate gradients as a general framework for training spiking neural networks end-to-end [1], 

showcase its capabilities for instantiating spiking neural networks with sparse activity, and demonstrate its 

capabilities on analog neuromorphic hardware [2]. I will also outline a deep link between approximate 

surrogate gradients and a family of bio-inspired online learning rules [3-5]. 

 

 

Key highlights 

⚫ Reliable learning algorithms for training spiking neural networks end-to-end exist 
⚫ Surrogate gradients can self-calibrate analog neuromorphic substrates 
⚫ Effective online learning rules and initialization strategies inspired by neurobiology exist 

 
 

References and useful links  

[1] Neftci, E.O., Mostafa, H., and Zenke, F. (2019). IEEE SPM 36, 51–63. https://doi.org/10.1109/MSP.2019.2931595. 

[2] Cramer, B., Billaudelle, S., Kanya, S., Leibfried, A., Grübl, A., Karasenko, V., Pehle, C., Schreiber, K., Stradmann, Y., 

Weis, J., Schemmel, J., and Zenke F. (2022). PNAS 119. https://doi.org/10.1073/pnas.2109194119. 

[3] Rossbroich, J., Gygax, J., and Zenke, F. (2022). Fluctuation-driven initialization for spiking neural network training. 

https://doi.org/10.48550/arXiv.2206.10226. 

[4] Zenke, F., and Ganguli, S. (2018). Neural Comput 30, 1514–1541. https://doi.org/10.1162/neco_a_01086. 

[5] Zenke, F., and Neftci, E.O. (2021). Proceedings of the IEEE 109, 935–950. 

https://doi.org/10.1109/JPROC.2020.3045625. 

https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1073/pnas.2109194119
https://doi.org/10.48550/arXiv.2206.10226
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1109/JPROC.2020.3045625
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Enabling Neuromorphic Learning Machines 

with Meta-learning 
Emre Neftci, Forschungszentrum Jülich and RWTH Aachen 

Overview 

The data-intensive and randomized learning process that characterizes state-of-the-art Spiking Neural 

Network (SNN) training is incompatible with the physical nature and real-time operation of the brain and 

neuromorphic hardware. Bi-level learning, such as meta-learning, can be used in deep learning to 

overcome these limitations.  

In this talk, I will focus on gradient-based meta-learning methods, namely Model Agnostic Meta Learning 

(MAML), in SNNs in conjunction with the surrogate gradient method and a roadmap of their implementation 

in neuromorphic hardware. I'll further discuss 1) the hardware advantages that accrue from meta-learning: 

fast learning without the requirement of high precision weights or gradients and training-to-learn with 

quantization and mitigating the effects of approximate synaptic plasticity rules, 2) the requirements with 

respect to datasets, and 3) and how meta-learning can enable new neuromorphic learning technologies for 

real-world problems. 

 

 

 

 

 

 

 

 

 

 

 

Key highlights 

● Real-world learning with low hardware requirements (precision, endurance, linearity, etc) 
● Showcases applications for on-chip learning 
● Requirements for dataset collection 

References and useful links  
[1] Stewart, Kenneth Michael, and Emre Neftci. "Meta-learning spiking neural networks with surrogate gradient descent." 

Neuromorphic Computing and Engineering (2022). (https://iopscience.iop.org/article/10.1088/2634-4386/ac8828/meta) 

[2] Stewart, Kenneth, et al. "Online few-shot gesture learning on a neuromorphic processor." IEEE Journal on Emerging and Selected 

Topics in Circuits and Systems 10.4 (2020): 512-521. 

 (https://ieeexplore.ieee.org/abstract/document/9229141) 
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Neuromorphic Event-Based Vision 
Christoph Posch, CTO, cposch@prophesee.ai 

Overview 

Neuromorphic Event-based (EB) vision is an emerging paradigm of acquisition and processing of visual 

information that takes inspiration from biology, trying to recreate its visual information acquisition and 

processing operations on VLSI silicon chips. 

Today, the majority of EB sensor devices are based on the “temporal contrast” or “change detection” (CD) 

type of operation, loosely mimicking the transient Magno-cellular pathway of the human visual system. In 

contrast to conventional image sensors, CD sensors do not use one common sampling rate (=frame rate) 

for all pixels, but each pixel defines the timing of its own sampling points in response to its visual input by 

reacting to changes of the amount of incident light. The output generated by such a sensor is not a 

sequence of images but a quasi-time-continuous stream of pixel-individual contrast events, generated and 

transmitted conditionally, based on the dynamics happening in the scene. Acquired Information is encoded 

and transmitted in the form of data packets containing the originating pixel’s X,Y coordinate, time stamp, 

and often contrast polarity. 

The highly efficient way of acquiring sparse data, the high temporal resolution and the robustness to 

uncontrolled lighting conditions are characteristics of the event sensing process that make EB vision 

attractive for numerous applications in industrial, surveillance, IoT, AR/VR, and automotive. 

 

Key highlights 

● High-speed vision at uncontrolled lighting conditions 
● Sparse redundancy-free sampling 
● Wide dynamic range operation 

References and useful links  
[1] P. Lichtsteiner, C. Posch and T. Delbruck, "A 128× 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor," in 

IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 566-576, Feb. 2008 

[2] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco and T. Delbruck, "Retinomorphic Event-Based Vision Sensors: Bioinspired 

Cameras With Spiking Output," in Proceedings of the IEEE, vol. 102, pp. 1470-1484, Oct. 2014 

[3] T. Finateu et al., "5.10 A 1280×720 Back-Illuminated Stacked Temporal Contrast Event-Based Vision Sensor with 4.86µm Pixels, 

1.066GEPS Readout, Programmable Event-Rate Controller and Compressive Data-Formatting Pipeline," ISSCC 2020 



 
 

tinyML Neuromorphic Engineering Forum Page #13 

New Eyes Optimized For Machines 
Dr. Charbel Rizk, CEO & Founder, charbel.rizk@oculi.ai 

Overview 

Oculi is putting the "Human Eye" in AI: machines outperform humans in most tasks but human vision 

remains far superior delivering the actionable signal in real time and consuming only mW's. As biology and 

nature have been the inspiration for much of the technology innovations, developing vision technology that 

mimics the eye+brain architecture is the logical path. Unlike photos and videos we collect for personal 

consumption, machine vision is not about pretty images and the most number of pixels. Machine vision 

should extract the “best” actionable information very efficiently (in time and energy) from the available signal 

(photons). At Oculi, we have developed a new architecture for computer and machine vision that enables 

dynamic and real time optimization. The core of this disruptive approach is the Oculi SPU (Sensing & 

Processing Unit) which is an intelligent Software Defined Vision Sensor combining sensing + processing at 

the pixel, the true edge for imaging sensors. This presentation will highlight the novel architecture and 

provide example use cases that are uniquely positioned for TinyML.  

 

Key highlights 
● Overview of the Oculi vision architecture. 
● Vision Intelligence platform with S11 prototype. 
● Example use cases for TinyML including the weather station challenge. 

References and useful links  

[1] https://globalventuring.com/university/oculi-eyes-computer-vision-revolution/ 

[2] https://www.edge-ai-vision.com/2022/05/edge-ai-and-vision-alliance-announces-2022-vision-tank-winners/ 

[3] https://www.eetimes.com/startup-mimics-human-eye-by-adding-processing-to-pixels/ 

[4] https://semiwiki.com/ceo-interviews/304902-ceo-interview-charbel-rizk-of-oculi/ 

[5] https://lebnet.us/Expert-Voice/11907027 
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Spiking Neural Networks for Low-Power 

Real-Time Inference 
Sadique Sheik, VP, Artificial Intelligence, SynSense AG, 

sadique.sheik@synsense.ai 

Overview 
 

SynSense is a low-power edge computing ASIC design company. We are developing approaches for 

machine vision, bio- and industrial signal processing based on neuromorphic principles. We specialize in 

integrated sensor-processor solutions for edge inference. As part of this endeavor, we also develop novel 

algorithms and solutions to find optimal spiking neural networks to solve real-world tasks. 

 

This presentation will give you a brief overview of two of SynSense’s device platforms a) Speck platform 

tailored for low-latency and ultra-low-power vision processing, b) Xylo platform tailored towards sub-mW 

low dimensional signal processing. We will have a look at the typical workflow from model development to 

deployment onto these devices and the corresponding python-based software infrastructure [2]. We will 

have a look at some commercial use cases where such technology could be applied with some 

demonstrators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key highlights 

● Introduction to Integrated Sensor processors: Speck and Xylo 
● Overview of the development pipeline. 
● Use case demonstrations. 

References and useful links  

[1] synsense.ai 

[2] sinabs.ai: Development pipeline for Speck, rockpool.ai: Development pipeline for Xylo 

 

 

file:///C:/Users/Home/Desktop/tomorrow/synsense.ai
file:///C:/Users/Home/Desktop/tomorrow/sinabs.ai
file:///C:/Users/sadique/SynSense%20Dropbox/Sadique%20Sheik/TinyML-27-09-2022-TCP/rockpool.ai
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Fully Spike-based Processing with Front-

end Dynamic Vision Sensor and Back-end 

Spiking Neural Network 
Jae-sun Seo, Associate Professor, Arizona State Univ., jseo28@asu.edu 

Overview 

Spiking neural networks (SNN) mimic the operations in biological nervous systems. By exploiting event-

driven computation and data communication, SNNs can achieve very low power consumption. However, 

two issues have persisted: (1) directly training SNNs have not resulted in competitive inference accuracy; 

(2) non-spike inputs (e.g. natural images) need to be converted to a train of spikes, which results in long 

latency. To exploit event-driven end-to-end operations, integration of spike-based front-end sensors such 

as dynamic vision sensors (DVS) and back-end SNNs become ideal. In addition, it is crucial to have a 

back-propagation based training algorithm that can directly train SNNs with continuous input spikes from 

DVS output. Such fully spike-based algorithm and hardware co-design will enable sparse and energy-

efficient event-based end-to-end neuromorphic systems.   

 

 

Key highlights 

● Combining front-end spike-based sensor such as dynamic vision sensor (DVS) and back-end spiking neural 
network (SNN) based accelerator fully exploits the end-to-end efficient event-based processing.  

● SNN algorithm accuracy in recent literature has largely improved for image/video applications. 
● Efficient SNN accelerators that tightly integrates with spike-based sensors are required. 

References and useful links  

[1] A. Lele et al., "An End-to-End Spiking Neural Network Platform for Edge Robotics: From Event-Cameras to Central 

Pattern Generation," IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 3, Sep. 2022. 

[2] J. Meng et al., “LT-SNN: Self-adaptive Spiking Neural Network with Learnable Threshold,” SRC TECHCON, 2022. 
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tinyML In-filter Computing using 

Neuromorphic Cochlea  
Chetan Singh Thakur, Assistant Professor, csthakur@iisc.ac.in 

Overview 

Edge devices are often constrained by the available computational power and hardware resource. We 

present a novel in-filter computing framework that can be used for designing ultra-light classifiers for time-

series data. Unlike a conventional pattern recognizer, where the feature extraction and classification are 

designed independently, this architecture directly integrates convolution and nonlinear filtering operations 

into the kernels of a Support Vector Machine (SVM). The result of this integration is a template-based SVM 

with user-defined memory constraints in terms of fixed template vectors. Here, we have used the 

Neuromorphic Cochlea as a kernel in our template-based SVM formulation, which also acts as a feature 

extractor for time-series data. We prototyped the proposed system, on an FPGA and a Cortex-M4 MCU, 

for multiple ecological and healthcare applications using acoustic and IMU sensors. 

 

 

 

 

 

Key highlights 

● Neuromorphic Cochlea as a feature extractor and SVM kernel 
● Sensing and inference at the edge within a few mW of power 
● Portables to tiny FPGA and tiny microcontroller Boards 
● Deployed as a sensor network for Ecological applications with LoRA connectivity 

References and useful links  

[1] A.R. Nair, S. Chakrabartty, C.S. Thakur, “In-filter Computing For Designing Ultra-light Acoustic Pattern 

Recognizers“, IEEE Internet of Things (IoT) Journal. 

[2] H.R. Sabbella, A.R. Nair, V. Gumme, S.S. Yadav, S. Chakrabartty, C.S. Thakur, “An Always-On tinyML Acoustic 

Classifier for Ecological Applications,“ IEEE International Symposium on Circuits and Systems (ISCAS), 2022.  

[3] tinyML Asia 2021 Video Poster: Bird Hotspots: A tinyML acoustic classification system for ecological insights. 

https://www.youtube.com/watch?v=ZgiX-gDikhg
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Combining Neuromorphic Design Principles 

with Modern Machine Learning Algorithms 
Anil Mankar, Chief Development Officer, amankar@brainchip.com 

Overview 

We discuss neuromorphic computing from the perspective of a company that designs computing solutions 

for machine learning (ML) applications at the edge. First, we examine how bringing ML applications to the 

edge is heavily influenced by the industry’s past, which includes training deep neural networks (DNNs) on 

cloud servers, and how neuromorphic computing principles provide an excellent blueprint for solving 

constraints unique to edge computing. We then discuss how our design architecture applies neuromorphic 

principles to reduce the memory bandwidth and power usage at multiple scales while at the same time 

preserving important advantages that come with conventional ML algorithms and digital design. Finally, we 

discuss why neuromorphic computing is the future of edge computing and detail application areas and 

research topics where there is likely an opportunity for breakthroughs in efficiency and performance. 

  

 

Key highlights 

● It is possible to build fully digitally designed hardware that runs conventional ML algorithms using 
neuromorphic principles to dramatically reduce system-level memory bandwidth and power usage. 

● Event-based computation and at-memory-compute are neuromorphic computing principles that can be 
applied in current hardware accelerator designs. 

● CNNs provide state-of-the-art performance on many ML tasks but can be further augmented with 
neuromorphic inspired learning rules to enable on-chip learning and preserve customer privacy. 

References and useful links  

[1] https://brainchip.com/ 

[2] https://doc.brainchipinc.com/ 

https://brainchip.com/
https://doc.brainchipinc.com/
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Neuromorphic Engineering  

needs applications 
André van Schaik, Director International Centre for Neuromorphic Systems, 

a.vanschaik@westernsydney.edu.au 

Overview 

Interest in Neuromorphic Engineering has been growing exponentially, particularly in the past decade. I 

believe this is mainly due to the end of Moore’s law, which has fuelled progress in electronics for over fifty 

years. Now that it is getting more and more difficult and expensive to cram ever more transistors on a single 

chip, the drive for industry to look for alternative approaches is strong, which in turn drives growth in 

academic research. Unlike Quantum computing, neuromorphic engineering promises to use currently 

available microelectronic manufacturing and design technology, but use it differently, rather than having to 

invent whole new manufacturing processes. The rise of smart devices, with strict size and power 

constraints, is also adding to the growth of interest in Neuromorphic Engineering. The ‘smarts’ in such 

devices are often that these devices don’t just measure their environment, or operate independently of it, 

but instead perceive their environment and make decisions on how to act based on these observations. 

This is precisely what neural systems in biology have evolved for, hence the promise of neuromorphic 

engineering which takes its inspiration from such biological neural systems. 

 
This growth in interest and funding is great for the field, but it is now up to us, Neuromorphic Engineers, to 

deliver on some of these promises and develop practical applications and do so within the next five years. 

Without such applications, I fear industry will conclude that Neuromorphic Engineering cannot deliver on its 

promises, and research funding will dry up. Thus, I argue for a strong applied research focus for the field, 

at least until we have demonstrated that we can indeed provide solutions to existing problems. 

 

In this talk I will present some of the applications of neuromorphic technology we are developing at the 

International Centre for Neuromorphic Engineering and will highlight our world-first Master of 

Neuromorphic Engineering degree to train the next generation of Neuromorphic Engineers. 
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